

Hitchhikers Guide to Structural and Functional Coverage

Merging and Mapping with VCS®, SystemVerilog and VMM

Jacob Andersen

Benny Andersson

Peter Jensen

SyoSil ApS

Systems on Silicon

Himmelev bugade 53, 4000 Roskilde, Denmark

{jacob, benny, peter}@syosil.com

www.syosil.com

ABSTRACT

This paper provides the reader with guidelines and advice on how to successfully deploy structural and

functional coverage with VCS® 2009.12. The paper takes its offset in experiences gained from real

industrial projects, and provides general solutions for several merging problems.

In general, coverage is demystified through a down to Earth view on the topic. Three specific scenarios

of coverage merging and mapping are presented. Each scenario addresses common misunderstandings

related to coverage. Especially, when non-configurable and configurable (through parameters etc.)

RTL blocks are verified in multiple testbenches and when they are instantiated multiple times in the

different test benches.

SNUG 2010 2 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Table of Contents

1 DEFINITIONS .. 4

2 INTRODUCTION ... 4

3 GENERAL COVERAGE TASKS .. 5

3.1. VCS® COVERAGE FEATURES MAPPED TO GENERAL COVERAGE TASKS..................................... 7

4 EXAMPLE RTL DESIGNS AND TESTBENCHES.. 7

5 COVERAGE MERGING ACROSS TESTS... 9

6 COVERAGE MERGING ACROSS TESTBENCHES... 11

7 COVERAGE MAPPING... 11

8 SYSTEMVERILOG CONSTRUCTS THAT AFFECTS COVERAGE .. 15

8.1. `DEFINES ... 15

8.2. PARAMETERS ... 18

8.3. `DEFINES AND PARAMETERS ... 23

9 COVERAGE EXCLUSION .. 23

10 COMBINING ALL COVERAGE FEATURES .. 24

11 COVERAGE REPORTING ... 24

12 CONCLUSION .. 27

13 REFERENCES ... 27

Table of Figures
Figure 1: Abstraction of a part of a real verification project .. 6

Figure 2: General coverage tasks and features ... 6
Figure 3: Snippet of the generated coverage report ... 11
Figure 4: Downwards module coverage ... 14

Figure 5: Upwards module coverage .. 14

Figure 6: Upwards instance coverage for instance modbase_i .. 14

Figure 7: Coverage report for RTLB with MY_DEFINE set.. 17

Figure 8: Coverage report for RTLB without MY_DEFINE set .. 17

Figure 9: Coverage report for RTLC with MY_DEFINE set .. 17

Figure 10: Coverage report for RTLC without MY_DEFINE set .. 17

Figure 11: parm3 RTLD hierarchy list ... 20
Figure 12: parm3 RTLD modlist .. 20
Figure 13: parm3 RTLD modbase toggle coverage ... 20
Figure 14: parm4 RTLD hierarchy list ... 21

Figure 15: parm4 RTLD modlist .. 21

file:///C:/Users/Yksop/Desktop/SyoSil/jacob/Desktop/SNUG_CoveragePaper/esnug10_draft_andersen_andersson_jensen.doc%23_Toc260222314
file:///C:/Users/Yksop/Desktop/SyoSil/jacob/Desktop/SNUG_CoveragePaper/esnug10_draft_andersen_andersson_jensen.doc%23_Toc260222315

SNUG 2010 3 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Figure 16: parm4 RTLD modbase toggle coverage ... 21
Figure 17: parm3_5 RTLD hierarchy list ... 21
Figure 18: parm3_5 RTLD modlist .. 22

Figure 19: parm3_5 RTLD modbase toogle coverage (WIDTH=3) ... 22

Figure 20: parm3_5 RTLD modbase toggle coverage (WIDTH=5) ... 22

Figure 21: General batch coverage flow with URG ... 25
Figure 22: General batch coverage flow with URG and VMM Planner .. 26

Table of Tables
Table 1: Coverage feature matrix ... 7

file:///C:/Users/Yksop/Desktop/SyoSil/jacob/Desktop/SNUG_CoveragePaper/esnug10_draft_andersen_andersson_jensen.doc%23_Toc260222334
file:///C:/Users/Yksop/Desktop/SyoSil/jacob/Desktop/SNUG_CoveragePaper/esnug10_draft_andersen_andersson_jensen.doc%23_Toc260222335

SNUG 2010 4 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

1 Definitions
CRV: Constrained Random Verification

ASIC: Application Specific Integrated Circuit

ABV: Assertion Based Verification

DUT: Device Under Test

VCS: Verilog/SystemVerilog simulator from Synopsys

URG: Unified Report Generator (Part of the VCS® tool chain)

DVE: Discovery Visualization Environment (Part of the VCS® tool chain)

LSF: Load Sharing Facility

SGE: Sun Grid Engine

VMM: Verification Methodology Manual (For SystemVerilog)

HVP: Hierarchical Verification Plan

2 Introduction

This paper provides the reader with guidelines and advice on how to successfully deploy structural-,

functional- and assertion coverage with VCS® 2009.12. The paper takes its offset in experiences

gained from real industrial projects, and provides general solutions for several coverage related prob-

lems. Common misunderstandings related to coverage merging are addressed, especially when RTL

blocks are verified in multiple test benches and they are instantiated multiple times in the different test

benches.

The paper presents a down to Earth view on coverage merging and demystifies the topic, while pre-

senting specific scenarios of coverage merging and mapping. The scenarios are presented through

some simple examples, which resemble the blocks used in the real industrial RTL design.

Experiences gained from verification of a real design shows that just reading the VCS® documentation

about coverage will simply not get the job done when a project grows to a substantial size.

Basically, the VCS® documentation provides a classic feature presentation, typical for software user

guides. For each feature, it provides almost a complete set of information, related solely to that feature,

but it lacks information, when the features are used together. Thus, it delivers answers to many aspects

of coverage, but the information is presented per feature. What if you have a block, which needs all of

these coverage features in the same project?

Hence, the verification engineer, who is responsible for the coverage is put in a tough situation. He/

she face several coverage tasks, which should be carried out by utilizing several VCS® coverage fea-

tures (potentially using multiple of those features at the same time), but the VCS® documentation does

not provide this kind of information. This is actually quite a big job, when one is inexperienced or

when the verification task is big, e.g. for a whole ASIC with several testbenches etc.

The overall goal of this paper is to provide the perpendicular, task oriented view on coverage which

aids the verification engineer. In that aspect, this paper is a hitchhiker’s guide to coverage with VCS.

SNUG 2010 5 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Section number 3 defines a general set of coverage tasks, which a verification engineer must carry out

on large ASIC projects. The section takes its offset by presenting an abstraction of a real verification

project. The ASIC in the real project was fairly big, with approximately 700 unique RTL modules and

6-7 VMM/Vera testbenches. The daily regression produced about 10GB of data to be analyzed each

day (Coverage reports, log files etc.)

The general tasks are presented based upon this real verification project and finally they are mapped to

VCS® coverage features. This paper is example based. Hence, section 4 presents the example designs

and testbenches used throughout this paper. Each of the following sections deals with one of the gen-

eral coverage tasks by presenting a short description of the task, followed by a list of observed prob-

lems, derived from the real project. Each section ends with some recommendations to how the prob-

lems could be tackled.

The scope of this paper is limited to structural coverage only for simplicity. Thus, all examples are

only shown for structural coverage if not stated explicitly. The recommendations given in section 5 to

9 still applies for functional and assertion coverage. Moreover, the paper should be viewed as an ad-

dendum to the VCS® documentation and it does not try to replace it in any way.

Furthermore, the reader is expected to be familiar with the VCS® tool chain. The different binaries

and how to enable coverage is out of the scope for this paper.

3 General Coverage Tasks
Today, in a typical real ASIC verification project, coverage plays a vital role, due to the coverage

based verification methodologies, which are deployed. This calls for definition, collection and report-

ing of coverage. This paper deals with the collection and reporting of coverage. Over the last couple of

years these two tasks has grown tremendously, due to many topics:

 Coverage based verification methodologies (CRV (VMM), ABV)

 Improved implementation/verification languages (SystemVerilog)

 More complex designs, which utilize reuse

 Very large daily/weekly regressions, producing massive amount of coverage data from multiple

testbenches, testing the same blocks in different ways.

For example, take Figure 1. It shows an abstraction of a part of a real verification project. Block A has

its own testbench, in which it can be instantiated either as A0 or A1. This is controlled through a `de-

fine. Additionally, block B has its own testbench and not all of the functionality implemented by

block B is used in block C, so coverage exclusion was introduced. Together block A and block B are

instantiated in Block C, which then as well has its own testbench. Block A is instantiated multiple

times, both as A0 and A1. Finally, block C is instantiated inside the top level testbench along with

some other blocks. Thus, block A and B are present in three testbenches from which coverage should

be collected via merging across tests, testbenches etc., so reports that answered well known manager

questions like: “What is the overall coverage for block A?” could be generated.

SNUG 2010 6 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

A lot of experience was gained by working with the verification setup depicted in Figure 1. The project

revealed that a lot of VCS® coverage features need to be utilized in an industrial size ASIC project,

when trying to generate coverage reports, where multiple blocks can be parameterized, instantiated

multiple times in multiple testbenches etc. A set of general tasks/features was derived based on these

experiences. Figure 2 shows these general tasks/features, which was identified during the verification

work of block A, B, C etc.

Merging coverage

across tests

Coverage

Mapping

Coverage

Reporting

Merging coverage

across testbenches

Coverage

Exclusion

SystemVerilog

constructs that

affects coverage

COVERAGE

Legend:

Testbench RTL Unused

Sub-Block B

Sub-Block A

A0

B

A1 Or C

A0 A1

A1 A1

B

C

A0 A1

A1 A1

B

Top level

Other

blocks

Sub-block C

Figure 1: Abstraction of a part of a real verification project

Figure 2: General coverage tasks and features

SNUG 2010 7 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

The following sections cover these general tasks/features and provide guidelines, recommendations

and advice on how they are solved by utilizing VCS® coverage features.

3.1. VCS® Coverage Features Mapped to General Coverage Tasks

Figure 2 in the previous section defined a set of general coverage tasks/features, which were obtained by

working with a real industrial ASIC verification project, but how does this map to VCS® coverage

features?

In general VCS® provides coverage mechanisms for structural, functional and assertion coverage for

the SystemVerilog HDL. The VCS® coverage features matrix defined in Table 1 gives an overview of

how the general coverage related tasks/features relate to the VCS® tool chain.

Table 1: Coverage feature matrix

 Coverage Type

General Task/Feature Structural Functional Assertion

Merging across tests VCS/URG VCS/URG VCS/URG

Coverage merging

across test benches

URG URG URG

Coverage mapping URG Not Supported Not Applicable

SV constructs which

affects coverage

VCS VCS VCS

Coverage Exclusion URG/DVE URG/DVE URG/DVE

Coverage Reporting URG/DVE/VMM

Planner

URG/DVE/VMM

Planner

URG/DVE/VMM Planner

The following sections will provide example based guide lines and advice on the general tasks/features

related to VCS® features in the coverage feature matrix and to the combination of those.

4 Example RTL Designs and Testbenches

The table below defines four different RTL designs, which are going to be used throughout this paper:

 RTLA: This is a standard RTL module and input mapped to an output through some very sim-

ple logic. It contains no `defines or parameters.

 RTLB: Same as RTLA, but with simple `define

 RTLC: As RTLB, but the `defines enables two completely different code sections

 RTLD: Standard RTL module with a parameter for controlling the width of the input and out-

put vectors.

RTLA:

module modbase(

 input bit clk,

 input bit rst,

 input logic [2:0] inv,

 output logic [2:0] outv);

RTLB:

module modbase_def(

 input bit clk,

 input bit rst,

 input logic [2:0] inv,

 output logic [2:0] outv);

SNUG 2010 8 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

 always_ff @(posedge clk) begin

 if(rst) begin

 outv <= 3'b000;

 end else begin

 unique case(inv[2:0])

 3'b000 : outv[2:0] <= 3'b000;

 3'b001 : outv[2:0] <= 3'b001;

 3'b010 : outv[2:0] <= 3'b010;

 3'b011 : outv[2:0] <= 3'b011;

 3'b100 : outv[2:0] <= 3'b100;

 3'b101 : outv[2:0] <= 3'b101;

 3'b110 : outv[2:0] <= 3'b110;

 3'b111 : outv[2:0] <= 3'b111;

 endcase // case (inv[2:0])

 end

 end // always

endmodule // modbase

 always_ff @(posedge clk) begin

 if(rst) begin

 outv <= 3'b000;

 end else begin

`ifdef MY_DEFINE

 unique case(inv[2:0])

 3'b000 : outv[2:0] <= 3'b000;

 3'b001 : outv[2:0] <= 3'b001;

 3'b010 : outv[2:0] <= 3'b010;

 3'b011 : outv[2:0] <= 3'b011;

 3'b100 : outv[2:0] <= 3'b100;

 3'b101 : outv[2:0] <= 3'b101;

 3'b110 : outv[2:0] <= 3'b110;

 3'b111 : outv[2:0] <= 3'b111;

 endcase

`else

 unique case(inv[2:0])

 3'b000 : outv[2:0] <= 3'b111;

 3'b001 : outv[2:0] <= 3'b000;

 3'b010 : outv[2:0] <= 3'b001;

 3'b011 : outv[2:0] <= 3'b010;

 3'b100 : outv[2:0] <= 3'b011;

 3'b101 : outv[2:0] <= 3'b100;

 3'b110 : outv[2:0] <= 3'b101;

 3'b111 : outv[2:0] <= 3'b110;

 endcase

`endif

 end

 end // always

endmodule // modbase_def

RTLC:

module modbase_def1(

 input bit clk,

 input bit rst,

 input logic [2:0] inv,

 output logic [2:0] outv);

 always_ff @(posedge clk) begin

 if(rst) begin

 outv <= 3'b000;

 end else begin

`ifdef MY_DEFINE

 unique case(inv[2:0])

 3'b000 : outv[2:0] <= 3'b000;

 3'b001 : outv[2:0] <= 3'b001;

 3'b010 : outv[2:0] <= 3'b010;

 3'b011 : outv[2:0] <= 3'b011;

 3'b100 : outv[2:0] <= 3'b100;

 3'b101 : outv[2:0] <= 3'b101;

 3'b110 : outv[2:0] <= 3'b110;

 3'b111 : outv[2:0] <= 3'b111;

 endcase

`else

 if(inv[2:0] === 3'b000)

 outv[2:0] <= 3'b111;

 else

RTLD:

module modbase_param #(WIDTH = 5) (

 input bit clk,

 input bit rst,

 input logic [WIDTH-1:0] inv,

 output logic [WIDTH-1:0] outv);

 always_ff @(posedge clk) begin

 if(rst) begin

 outv <= 'b0;

 end else begin

 if (inv < 6)

 outv <= inv;

 else if (inv < 13)

 outv <= inv + 1;

 else

 outv <= inv + 2;

 end

 end // always

endmodule // modbase_param

SNUG 2010 9 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

 outv[2:0] <= 3'b001;

`endif

 end

 end // always

endmodule // modbase_def1

Several small testbenches are created to drive stimuli into these modules. The following table lists two

typical testbenches used in this paper. Not all testbenches are listed here for simplicity.

Testbench for RTLA:

module tbbase;

 bit clk;

 bit rst;

 logic [2:0] inv;

 logic [2:0] outv;

 modbase modbase_i(.clk(clk),

 .rst(rst), .inv(inv), .outv(outv));

 initial begin

 clk = 1'b0;

 forever begin

 #50;

 clk = ~clk;

 end

 end

 initial begin

 logic [2:0] inv_val;

 int status =

 $value$plusargs("inv_val=%b",

 inv_val);

 $display("%t: inv_val = %b(%0d)",

 $time, inv_val, inv_val);

 rst <= 1'b1;

 repeat (5) @(posedge clk);

 rst <= 1'b0;

 inv[2:0] = inv_val[2:0];

 repeat (5) @(posedge clk);

 $display("%t: outv = %b", $time,

 outv);

 $finish;

 end

endmodule

Testbench for RTLD:

module tbbase_param_3;

 bit clk;

 bit rst;

 logic [2:0] inv;

 logic [2:0] outv;

 modbase_param #(.WIDTH(3)) modbase_i(

 .clk(clk), .inv(inv), .outv(outv));

 initial begin

 clk = 1'b0;

 forever begin

 #50;

 clk = ~clk;

 end

 end

 initial begin

 logic [2:0] inv_val;

 int status =

 $value$plusargs("inv_val=%b",

 inv_val);

 $display("%t: inv_val = %b(%0d)",

 $time, inv_val, inv_val);

 rst <= 1'b1;

 repeat (5) @(posedge clk);

 rst <= 1'b0;

 inv <= inv_val;

 repeat (5) @(posedge clk);

 $display("%t: outv = %b", $time,

 outv);

 $finish;

 end

endmodule

5 Coverage Merging across Tests

SNUG 2010 10 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Description:
Coverage merging across tests is the fundamental operation with respect to coverage. Hence, it would

be used with any testbench in Figure 1 to generate coverage reports. The task of merging across tests is

well covered by the VCS® documentation as long as the design contains no features described in sec-

tion 7 to 9.

The design and testbench is compiled once into a single executable with the preferred coverage

enabled. Then, the design can be simulated a number of times to obtain coverage. Finally, URG is used

to merge the coverage. Thus, the recommended flow is:

Compile : vcs …

Simulate : ./simv …

Report : urg –dir simv.cm

Then URG will generate a directory named urgReport, which contains the coverage report. Consult

the VCS® documentation for more information on this topic.

Problem:
We experienced two problems in the project related to the fundamental merging of coverage:

1. Initially very low overall coverage was obtained.

2. It was hard for verification engineers to locate specific tests coverage contribution

Recommendation:
Even though the problems described above may seem minor, they still need to be address among all

the other coverage related issues, if a well defined coverage methodology should be followed in a real

life project. Problem (1) above occurred due to the fact that by default VCS® gathers coverage on eve-

rything; the design testbench etc. Typically, there is no point in obtaining coverage on the testbench, so

it is recommended to exclude everything but the RTL. This is done by using the –cm_hier option for

VCS. The second problem, is caused by the fact that basic flows used for simulation typically does not

name each test specifically. Thus, it is recommended to add the –cm_name option for structural cov-

erage, when simulating multiple times with the same simv. This will name each test run in the

simv.cm directory. The recommended flow is now:

Compile : vcs…

Simulate 1: ./simv –cm_hier … -cm_name test1 …

…

Simulate N: ./simv –cm_hier … -cm_name testN …

Report : urg –dir simv.cm

SNUG 2010 11 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Figure 3: Snippet of the generated coverage report

Figure 3 shows an example of the generated coverage report when running the testbench for RTLA

with all combinations of inv_val. Furthermore, Figure 3 also shows how each test was named:

iv.000-iv.111.

6 Coverage Merging across Testbenches

Description:
The task of merging across testbenches is similar to merging across tests. It covers the situation, where

the same simv (testbench) is compiled multiple times and run in different locations. Thus, the test-

bench is simulated like described in section 5 and the flow is the same with a single exception. The

merged coverage report is generated by changing the report command to:

Report : urg –dir tb0/simv.cm tb1/simv.cm … tbN/simv.cm

Where tb0 to tbN are directories containing the compiled simv’s for each testbench. Again, it is pre-

sumed that the design contains no features described in section 7 to 9. This is the typical scenario,

when for instance multiple simulations are executed in parallel via SGE or LSF. The task of merging

across testbenches is also well covered by the VCS® documentation.

Problem:
The problems are the same as in the previous section.

Recommendation:
The recommendations are the same as in the previous section.

7 Coverage Mapping

SNUG 2010 12 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Description:

Coverage mapping is used, when coverage for a certain module needs to be obtained from different

testbenches. Typically, this is needed, when an RTL block for instance is not 100% verified in its own

block testbench, but parts are perhaps verified in the top level testbench.

When looking at any particular block in a design, one can easily see that there are 4 general instantia-

tion scenarios for any given block:

 Scenario 1: One RTL block is only instantiated once in a single testbench (1:1). This is the

normal case. No mapping is need. This is covered in section 5.

 Scenario 2: One RTL block is only instantiated once in multiple testbenches (1:M). Mapping

should be used here, since each of the testbenches might not be equivalent. Mapping will pro-

vide coverage numbers for a specific block. This resembles the situation depicted for sub-

block B and C in Figure 1.

 Scenario 3: One RTL block is instantiated multiple times in a single testbench (N:1).This is al-

so a normal case, since the same block is instantiated in the same testbench. Thus, no mapping

is needed to get the merged coverage. Sub block A in sub block C in Figure 1 depicts this sce-

nario.

 Scenario 4: One RTL block is instantiated multiple times in multiple testbenches (N:M). This

definitely calls for coverage mapping, since it is a merge of scenario 2 and 3. Sub block A in

Figure 1 has its own testbench and it is instantiated multiple times in sub block C etc.

Problem:
The URG documentation defines two terms mapped design and base design, but it is a bit vague on

which one should be put first on the command line after urg –dir … etc. Thus, in which order

should the coverage directories be placed in order to get for instance total coverage for a module. This

lead to the fundamental question, how is module and instance coverage accumulated when mapping

downwards (from a testbench with multiple instances to a testbench with fewer instances) and upwards

(the other way).

Furthermore, the URG documentation states that there must only be one instance in the base design of

the mapped design. Hence, only downwards mapping is supported. The problem is that one could easi-

ly make an error and put the coverage database in the wrong order. Thus, upwards merging will be

carried out.

To look at what happens when doing upwards merge, scenario 4 is analyzed. Design RTLA is instan-

tiated in 3 different testbenches called TB1, TB2 and TB3, with 1, 2 and 3 instances of RTLA. Each

testbench is then simulated with a specific set of input vectors, so the results can easily be analyzed:

 TB1: Simulated 2 times with inv = 3’b000 and 3’b001, providing line coverage for line

12 and 13 in RTLA.

 TB2: Simulated 1 time with inv = 3’b010 (1. instance) and inv = 3’b011 (2
nd

 in-

stance) providing line coverage for line 14 and 15 in RTLA.

 TB3: Simulated 1 time with inv = 3’b100 (1
st
 instance), inv2 = 3’b101 (2

nd
 instance)

and inv3= 3’b110 (3
rd

 instance), providing line coverage for line 16, 17 and 18 in RTLA.

SNUG 2010 13 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Now, the coverage databases from each of the four runs are merged in all permutations with URG:

urg –map modbase –dir tb1/simv.cm tb2/simv.cm tb3/simv.cm

urg –map modbase –dir tb1/simv.cm tb3/simv.cm tb2/simv.cm

urg –map modbase –dir tb2/simv.cm tb1/simv.cm tb3/simv.cm

urg –map modbase –dir tb2/simv.cm tb3/simv.cm tb1/simv.cm

urg –map modbase –dir tb3/simv.cm tb1/simv.cm tb2/simv.cm

urg –map modbase –dir tb3/simv.cm tb2/simv.cm tb1/simv.cm

Where, the first URG command is a complete downwards merge and the last one is a complete up-

wards merge. The URG commands in between are something in between a downwards and upwards

merge. Figure 4 shows the module coverage for the modbase module for the downwards merge (the

first URG command above). Note that module and instance coverage is the same, since the module is

only instantiated once in the base module.

SNUG 2010 14 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Figure 4: Downwards module coverage

Figure 5: Upwards module coverage

Figure 6: Upwards instance coverage for instance modbase_i

Figure 5 shows the module coverage for the modbase module for the upwards merge (the last URG

command above). Luckily this is the same as what was obtained from the downwards merge.

Figure 6 shows the instance coverage of the instance of modbase in called modbase_i in TB3. The

numbers show that the instance coverage generated from TB3 for this instance is merged with the

module coverage generated by TB1 and TB2. This means that typically the instance coverage when

doing upwards merging will be a merge of what ever the base design generated and the

Recommendation:

SNUG 2010 15 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Depending on which coverage number you are interested in, then you should choose between down-

wards or upwards coverage mapping. If you are interested in

No matter whether you choose to do upwards or downwards mapping, then only module coverage

makes sense and the merged numbers are the correct independently of the mapping direction. Thus,

mapping provides a grand total for the particular mapped module.

8 SystemVerilog Constructs that Affects Coverage
Description:

Until now, this paper has only been dealing with very simple RTL, without any parameters or `de-

fines. Based on experience, having a block which contains parameters or `defines in the design

introduces a lot of problems when working with coverage and especially when merging coverage from

multiple testbenches, where the block is instantiated with different settings of `defines and/or pa-

rameter values.

Sub block A in Figure 1 shows such a block, which can be instantiated in multiple versions depending

on the value of a `define or parameter.

This section will present some of the typical problems with `defines and parameters, which are

related to coverage. Thus, it will show fragments from the URG reports, generated by simulating

RTLA, RTLB, RTLC and RTLD with the related tesbenches.

8.1. `defines

Description:

`defines have been around for quite a while, and need no further introduction.

Problem:

Wrong or unexpected coverage is obtained when simulating a design with `defines.

When simulating designs with `defines, one has to be careful. The situation often occurs, when a

design needs to be configurable. When running regressions on this design, it is typically compiled with

the `define defined and undefined. At the end of the regression, all coverage is merged. This does

not always turn out to work as expected.

Design RTLB is simulated as follows in two separate directories:

Dir1:

vcs -cm line –sverilog +define+MY_DEFINE …

./simv -cm line +inv_val=000 -cm_name my_define.100

./simv -cm line +inv_val=001 -cm_name my_define.101

./simv -cm line +inv_val=010 -cm_name my_define.110

Dir2:

vcs -cm line –sverilog …

./simv -cm line +inv_val=000 -cm_name no_my_define.000

./simv -cm line +inv_val=001 -cm_name no_my_define.001

./simv -cm line +inv_val=010 -cm_name no_my_define.010

SNUG 2010 16 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Figure 7 and Figure 8 shows a fragment from the URG generated report with and without the `de-

fine set. The figures shows how URG is capable of merging line coverage, when the `defines

does not define a different number of lines. One has to be careful though, since the lines covered can

contain different information, potentially shadowing for actual lines of code, which has not been cov-

ered. The report is generated by the following URG command:

urg –report urgReport0-1 -dir Dir1/simv.cm Dir2/simv.cm

Additionally, putting Dir2/simv.cm first is also tried:

urg -report urgReport0-1 -dir Dir2/simv.cm Dir1/simv.cm

Now, what happens, when the `define selects between two different code sections with a different

number of lines? Design RTLC is now simulated in the same manner as design RTLB just have been

simulated. Again, the results are merged, using two different URG commands:

urg -report urgReport1-0 -dir Dir1/simv.cm Dir2/simv.cm

urg -report urgReport1-1 -dir Dir2/simv.cm Dir1/simv.cm

The results are shown in Figure 9 and Figure 10. Running both URG commands generates some er-

rors:

URG Version D-2009.12-1 Copyright (c) 1990-2009 by Synopsys, Inc.

Error-[CMR-VCBLKDIFF] Version Check Error:Block Difference

 Database mismatch: Number of blocks for instance "tbbase.modbase_i" in test

 file my_define1/simv.cm/coverage/verilog/test.line is not the same as in

 base design. Line coverage data of this instance will not be merged.

 Please ensure that all coverage tests are generated from same design. If

 problem still persists please contact vcs_support@synopsys.com.

Note-[URG-RDG] Report directory generated

 Report written to directory urgReport1-0

SNUG 2010 17 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Figure 7: Coverage report for RTLB with

MY_DEFINE set

Figure 8: Coverage report for RTLB without

MY_DEFINE set

Figure 9: Coverage report for RTLC with

MY_DEFINE set

Figure 10: Coverage report for RTLC without

MY_DEFINE set

Since the two designs are different due to the value of the `define. The generated errors were ex-

pected, but the experiment also showed that the reported coverage numbers depends on which directo-

ry is specified as the base coverage directory. Hence, the generated coverage reports might be missing

some coverage numbers, when merging coverage with `defines involved.

The last situation resembles the scenario shown for block A in Figure 1, which could be instantiated in

two different ways, controlled by a `define. In the real project we had to separate the merged cover-

age data by running two separate regression, one with and one without the define set.

SNUG 2010 18 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Recommendation:
Based on the findings presented in this section, the recommendation is to analyze the RTL carefully if

it contains any `defines and what they control. In most cases the RTL block should be simulated in

separate regressions for each value of the `define. Basically, the RTL block should be treated as

different RTL blocks for each value of the `define.

8.2. Parameters

Description:
Parameters are an important SystemVerilog construct, since it provides the RTL designer with the abil-

ity to produce reusable code. Reusable code is good, for many reasons, one of them being that there is

less to verify. However, seen from a coverage point of view, parameters are a bit troublesome, just like

`defines.

Problem:
Experience shows that verification engineers have a hard time understanding the coverage reports gen-

erated from merged coverage data from simulating designs with parameters.

RTLD is compiled and simulated with 3 different testbenches. One, which instantiates RTLD once

with the default parameter value (parm3), one testbench, where it is instantiated with the value 4

(parm4) and at last, one which instantiates RTLD twice with the WIDTH parameter set to the default

value and 5 (parm3_5),

To depict the problem, each testbench is executed a single time and the generated coverage databases

are then merged in all possible permutations.

First, using the parm3 as the base coverage database:

urg -report urgReport0-0 -dir parm3/simv.cm parm4/simv.cm parm3_5/simv.cm

Partial output:

URG Version D-2009.12-1 Copyright (c) 1990-2009 by Synopsys, Inc.

Warning-[CMR-IID] Illegal Instance Data

 There is an inconsistency between the compile and runtime database. The

 instance tbbase found in compile time database is not present in the runtime

 database

 Please ensure that the compile time data is not overwritten since

 simulation. If the problem persist please contact vcs-support

Warning-[CMR-IRIF] Improper Reference in File

 The reference to scope "inv1[2:0]" in file

 "parm3_5/simv.cm/coverage/verilog/test.tgl" is not found in the design.

 Please check if the above coverage data and the compile time data are of the

 same design.

urg -report urgReport0-1 -dir parm3/simv.cm parm3_5/simv.cm parm4/simv.cm

Partial output:

SNUG 2010 19 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

URG Version D-2009.12-1 Copyright (c) 1990-2009 by Synopsys, Inc.

Warning-[CMR-VCROLI] Register Indices mismatch

 Database mismatch: Indices for TGL coverage data entry "inv[3:0]" for

 instance "tbbase" in test file parm4/simv.cm/coverage/verilog/test.tgl do

 not match "inv[2:0]" in base design. Only data for bits that match will be

 merged.

The warnings show that only matching bits are merged. Fejl! Henvisningskilde ikke fundet. to Fejl!

Henvisningskilde ikke fundet. shows the hierarchy list (Fejl! Henvisningskilde ikke fundet.), mod-

ule list (Fejl! Henvisningskilde ikke fundet.) and the coverage for module RTLD (mod-

base_param, Fejl! Henvisningskilde ikke fundet.) for the two reports generated by the two URG

commands stated above.

SNUG 2010 20 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Running URG with parm4 and parm3_5 as base coverage databases:

urg -report urgReport1-0 -dir parm4/simv.cm parm3/simv.cm parm3_5/simv.cm

urg -report urgReport1-1 -dir parm4/simv.cm parm3_5/simv.cm parm3/simv.cm

urg -report urgReport2-0 -dir parm3_5/simv.cm parm3/simv.cm parm4/simv.cm

urg -report urgReport2-1 -dir parm3_5/simv.cm parm4/simv.cm parm3/simv.cm

Returns the same kind of error messages. Now, the hierarchy and module list shows different coverage

results for the different generated databases, even though they are generated from the same databases.

Figure 14 to Figure 16 provides snippets oft he hierarchy list, modlist and modbase toggle coverage for

parm4. Note that the hierarchical coverage is now 11.11% instead of 14.29% and that the total number

Figure 11: parm3 RTLD hierarchy list

Figure 12: parm3 RTLD modlist

Figure 13: parm3 RTLD modbase toggle coverage

SNUG 2010 21 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

of bits in the modbase coverage report is 14 for parm3 and 18 for parm4. Figure 17 to Figure 20 shows

the same for parm3_5 (Note, that there are two instances of modbase with WIDTH set to 3 and 5).

Figure 14: parm4 RTLD hierarchy list

Figure 15: parm4 RTLD modlist

Figure 16: parm4 RTLD modbase toggle cover-

age

Figure 17: parm3_5 RTLD hierarchy list

SNUG 2010 22 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Recommendation:

The experiments above show that things potentially can go wrong, when merging coverage databases

with parameterizable modules. The problem is that the reported coverage depends on which coverage

database is used as the base coverage database (listed first, right after the –dir option). Thus, the or-

der of the directories used in the URG command actually matters. The produced result only contains

the bits that match, leading to unexpected coverage results. The recommendation is to simulate the

different values for the parameters in separate simulation runs, and then only merge those with have

the same value if possible. Additionally, the coverage reports and output from URG should be studied

carefully, so incorrect merging is caught early on. To aid this process, it would be beneficial if the un-

derlying verification environment supported control of the order of coverage merging.

Figure 18: parm3_5 RTLD modlist

Figure 19: parm3_5 RTLD modbase toogle

coverage (WIDTH=3)

Figure 20: parm3_5 RTLD modbase toggle coverage (WIDTH=5)

SNUG 2010 23 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

8.3. `defines and Parameters

Description:

Mixing `defines and parameters will just make things worse. The two previous sections revealed

that one have to be careful, when the design contains `defines or parameters. Having a design with

a mixture of those will just multiply the problems. Hence, even more attention to validation of the cov-

erage reports should be paid.

Problem:
See Fejl! Henvisningskilde ikke fundet. and 8.2.

Recommendation:
See Fejl! Henvisningskilde ikke fundet. and 8.2.

9 Coverage Exclusion
Description:
Coverage exclusion can be done in two different ways:

1. Via the –cm_hier and other VCS® options. This allows the verification engineer to exclude

modules or specific instances etc. This method only works for structural coverage and it has ex-

isted for quite a while. See section 5 for more information about this.

2. Via a generated coverage exclusion file. The file is either written directly in a text editor or

generated by using DVE. The generated exclusion file can then be used to exclude coverage in

coverage reports generated with URG, by using the –elfile option for URG. This method is

fairly new and it works for both structural and functional coverage.

Problem:
Coverage exclusion using method (1) above is fairly trouble free. However, method (2) has a few ca-

veats. The following snippet shows a coverage exclusion file generated from DVE by another user

than the author for RTLA:

//==

// This file contains the Excluded objects

// Generated By User: benny

// Date: Fri Mar 12 12:57:59 2010

// ExclMode: default

//==

FILE:

/home/benny/esnug/experiments/synopsys/coverage_tests/hitchhiker_test/hdl/designs/

modbase.sv

INSTANCE: tbbase.modbase_i

Line 10

Line 16

Simulating RTLA and generating the coverage report with the exclude file, results in:

urg -lca -elfile $PROJECT/exclude/some.el -format both -report urgReport.elfile -

dir ./simv.cm

SNUG 2010 24 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Note-[URG-RDG] Report directory generated

 Report written to directory urgReport.noelfile

URG Version D-2009.12-1 Copyright (c) 1990-2009 by Synopsys, Inc.

…

Excluded item does not exist:

Warning-[UCAPI-EL-INVLINE] Invalid line in exclude file

 Invalid line number '10.0' found in the exclude file for Line coverage.

 Please rewrite/regenerate the exclude file.

Note-[URG-RDG] Report directory generated

 Report written to directory urgReport.elfile

even though line 10 exists in RTLA. The problem is the hard reference to the file name, since when the

author ran the command with the exclude file, the path is not correct. The path can be left out, but this

turns off synchronization checks.

Recommendation:
The coverage exclude files are a nice new feature, to fine tune coverage numbers, if e.g. the RTL has

features, which are not used in the current design. Then coverage exclude files, provides a mechanism

for specifying precise reports that reflects what actually have to be verified. However, experience

shows that verification engineers will spent a lot of time redoing these files, when generated with

DVE, due to the timestap/file reference problem. Thus, the recommendation is to use this feature late

in the project, when the RTL is fairly stable.

10 Combining All Coverage Features
The previous sections 5 to 9 have described different coverage related problems, based on experiences

gained from verifying a real ASIC.

The sections depict how many issues the verification engineer faces, when the RTL is generic etc. Fur-

thermore, in the real project, the A0/1 block was not 100% verified in its own testbench, but it relied

on verification of sub-block C and the top level verification as well. Thus, coverage reports, merged

from data from all testbenches, were crucial for the project. Many hours where spent on the underlying

coverage flow, so that is could setup the correct order of merging between coverage databases generat-

ed by different testbenches etc.

Coverage exclusion by means of the –cm_hier file was used and briefly the newer coverage exclu-

sion mechanism was used as well. This was then dropped later in the project, since this feature was

still in beta at that moment.

The overall recommendation is to allocate some resources to analyze the different blocks in the DUT

with respect to the coverage, so a flexible flow can be build, so for instance the merging order can be

controlled. Additionally, coverage merging strategy for each block is a good idea, so `defines, pa-

rameters etc. are handled correctly.

11 Coverage Reporting

SNUG 2010 25 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

Description:

This section will briefly describe the different ways of generating coverage reports. Moreover, it will

provide general flow diagrams for these coverage report flows.

Coverage reporting can be done in three different ways:

1. Using CoverageMetrics: cmview.

2. Using URG.

3. Using dve –cov.

CoverageMetrics mentioned in item (1) above is considered deprecated by the author. The functionali-

ty should be removed from the VCS installation, since it confuses people (well, at least the author), but

it is probably kept there for backward compatibility.

URG is to be considered as the primary tool for merging and generating coverage reports (item 2

above). This is the recommended way for batch processing, potentially producing trend graphs based

on VMM planner input. A general flow based on URG is shown in Figure 21. Such a flow should most

users of VCS already have in place. The flow handles multiple VCS® simulations and coverage report

generation with URG potentially using exclusion files generated with DVE.

DVE (item 3 above) does not provide means of generating reports like URG does. However, it pro-

vides a clickable gui, where coverage databases are visualized and inspected. Additionally, this is used

to generate coverage exclude file and VMM planner HVP files.

With VMM Planner, the coverage framework can be extended. VMM Planner can be used to highlight

the most important coverage numbers and separate them into a separate report which only contains

those numbers. These numbers can then be tracked over time, so trend graphs etc. can be generated.

This provides an effective and powerful tool for the verification engineer since he/she can now gener-

ate reports that contain only what the manager needs instead of the full URG html reports, which tends

to a bit overwhelming. Figure 22 provides the extended flow, where VMM Planner has been included.

VCS®Simulations

-Compile time structural

 coverage exclusion:
 -cm_hier <file>

 +/- tree …

 +/- tree …

 +/- tree …

-No exclusion per line possible

URG invocation:

- Support for coverage

exclusion files

- Generates reports and merged

databases

DVE Coverage Inspection with

dve –cov:

- Exclusion file generation

Coverage exclusion file

generated by DVE

Figure 21: General batch coverage flow with URG

SNUG 2010 26 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

It is optional whether the HVP file is generated from a spreadsheet or with DVE, but back annotation

is only available, if it is generated from a spreadsheet.

Problem:

Even though the flows reveal that the VCS® simulation platform provides many advanced coverage

features, then these options are provided by stand alone tools. The arrows in Figure 21 and Figure 22

show how to connect these tools. Hence, the arrows shows where manual scripting work is needed to

bind all of it together into a usable verification environment with proper coverage support. This is the

coverage reporting problem in a nutshell – knowing what tool to use when and how to connect them.

Recommendation:

Use the tools where they excel! There is some redundancy, e.g. the reports used for coverage inspec-

tion, which are generated by URG are either in text or in html format, but DVE can also be used for

coverage inspection.

The recommended usage for VCS, URG, DVE, etc. is:

 VCS/simv:

o Compile with only structural coverage for the RTL enabled.

o Use –cm_name for each test run.

o Reuse the simv as much as possible. Thus, coverage between tests are automatically

merged.

 URG:

o Use for merging between testbenches.

o Use for coverage exclusion.

o Use for HVP handling: back annotation, trend graphs etc.

VCS®Simulations

-Compile time structural

 coverage exclusion:
 -cm_hier <file>

 +/- tree …

 +/- tree …

 +/- tree …

-No exclusion per line possible

URG invocation

- Support for coverage

exclusion files

- Generates reports and merged

databases

DVE Coverage Inspection with

dve –cov

- Exclusion file generation

- HVP file generation

Coverage exclusion file

generated by DVE

HVP Definition file VMM Planner spreadsheet

HVP back annotation

Optional

Figure 22: General batch coverage flow with URG and VMM Planner

SNUG 2010 27 Hitchhikers Guide to Structural and

Functional Coverage Merging and

 Mapping with VCS, SystemVerilog and VMM

 DVE:

o Use for coverage inspection. This is preferred over reading the coverage html reports

generated by URG.

o Use for coverage exclusion.

 Spreadsheet:

o Use for HVP generation/definition.

Additionally, it is recommended to carefully look into the generated reports and URG output to vali-

date that the reported numbers are as expected and not suffering from any caveats (as explained in sec-

tion 6 to 9).

12 Conclusion
The tools VCS, DVE and URG from the VCS® tool chain do a good job. Together they provide a fea-

ture rich coverage platform. In general they produce expected coverage result, even when the input

RTL is tricky, when you actually analyze the scenario to be covered.

Thus, the conclusion is quite clear. The tool chain is working, but when moving away from simple

coverage merging and reporting, then more skilled resources are needed, if the verification should be

successfully based on coverage metrics. The paper has given some recommendations for handling var-

ious issues, which coverage based verification will run into during the lifetime of a project. In general,

the verification engineers should be very careful and spent some time and effort on getting a proper

flow implemented, which provides enough flexibility, so that different coverage strategies for different

modules can be supported. If such a flexible flow is in place and skilled people have analyzed and

handled all the subsequent coverage related problems in each testbench, then managers etc. should be

able to rely on the generated coverage reports. Furthermore, section 11shows that extending the frame

work to utilizing VMM planner completely requires substantial effort on the flow side, but if generi-

cally implemented, then the probability of reuse is quite high.

13 References

[1] Synopsys VCS® 2009.12 Documentation.

